Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pharm Pharmacol ; 75(7): 898-909, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: covidwho-20245412

RESUMO

OBJECTIVES: Saikosaponins (SSs) constitute a class of medicinal monomers characterised by a triterpene tricyclic structure. Despite their potential therapeutic effects for various pathological conditions, the underlying mechanisms of their actions have not been systematically analysed. Here, we mainly review the important anti-inflammatory, anticancer, and antiviral mechanisms underlying SS actions. METHODS: Information from multiple scientific databases, such as PubMed, the Web of Science, and Google Scholar, was collected between 2018 and 2023. The search term used was saikosaponin. KEY FINDINGS: Numerous studies have shown that Saikosaponin A exerts anti-inflammatory effects by modulating cytokine and reactive oxygen species (ROS) production and lipid metabolism. Moreover, saikosaponin D exerts antitumor effects by inhibiting cell proliferation and inducing apoptosis and autophagy, and the antiviral mechanisms of SSs, especially against SARS-CoV-2, have been partially revealed. Interestingly, an increasing body of experimental evidence suggests that SSs show the potential for use as anti-addiction, anxiolytic, and antidepressant treatments, and therefore, the related molecular mechanisms warrant further study. CONCLUSIONS: An increasing amount of data have indicated diverse SS pharmacological properties, indicating crucial clues for future studies and the production of novel saikosaponin-based anti-inflammatory, efficacious anticancer, and anti-novel-coronavirus agents with improved efficacy and reduced toxicity.


Assuntos
COVID-19 , Ácido Oleanólico , Saponinas , Humanos , SARS-CoV-2 , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia
2.
Ann Palliat Med ; 10(4): 4777-4798, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1200418

RESUMO

Coronavirus disease 2019 (COVID-19) has become a global pandemic affecting more than 200 countries with 87 million patients worldwide as of January 7, 2021. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates in a large amount and reaches high-titer levels in a short time after the infection. COVID-19 caused by SARS-CoV-2 shows clinical symptoms mainly including fever, fatigue, dry cough, and dyspnea. In more severe COVID-19 patients, viral pneumonia characterized by bilateral ground glass or patchy opacity, may lead to acute respiratory distress syndrome (ARDS), cytokine storm, multi-organ damage, and even death. Unfortunately, there is no effective therapy for COVID-19 until now. Magnesium isoglycyrrhizinate (MgIG), a magnesium salt of 18-α glycyrrhizic acid stereoisomer, belongs to the fourth generation of glycyrrhizic acid preparation. MgIG has various pharmacological activities including anti-inflammation, anti-oxidation, anti-virus, and immunoregulation, showing the protection against the injury of the vital organs (such as kidney, heart, and lung). Clinically, MgIG injection is usually used as a hepatoprotective agent to treat liver diseases. This narrative review summarizes the research and application of MgIG, and provides the evidence supporting the recommended MgIG as supportive therapy in the "Management Standard for Mild and Common Patients of Coronavirus Disease 2019 (COVID-19) (Second Edition)", which is jointly issued by National Health Commission of People's Republic of China and National Administration of Traditional Chinese Medicine.


Assuntos
COVID-19 , Saponinas , China , Humanos , SARS-CoV-2 , Saponinas/uso terapêutico , Triterpenos
3.
Mol Divers ; 25(3): 1889-1904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1046729

RESUMO

Saikosaponins are major biologically active triterpenoids, usually as glucosides, isolated from Traditional Chinese Medicines (TCM) such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia with their antiviral and immunomodulatory potential. This investigation presents molecular docking, molecular dynamics simulation, and free energy calculation studies of saikosaponins as adjuvant therapy in the treatment for COVID19. Molecular docking studies for 23 saikosaponins on the crystal structures of the extracellular domains of human lnterleukin-6 receptor (IL6), human Janus Kinase-3 (JAK3), and dehydrogenase domain of Cylindrospermum stagnale NADPH-oxidase 5 (NOX5) were performed, and selected protein-ligand complexes were subjected to 100 ns molecular dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Molecular docking and molecular dynamics simulation studies revealed that IL6 in complex with Saikosaponin_U and Saikosaponin_V, JAK3 in complex with Saikosaponin_B4 and Saikosaponin_I, and NOX5 in complex with Saikosaponin_BK1 and Saikosaponin_C have good docking and molecular dynamics profiles. However, the Janus Kinase-3 is the best interacting partner for the saikosaponin compounds. The network pharmacology analysis suggests saikosaponins interact with the proteins CAT Gene CAT (Catalase) and Checkpoint kinase 1 (CHEK1); both of these enzymes play a major role in cell homeostasis and DNA damage during infection, suggesting a possible improvement in immune response toward COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Humanos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Domínios Proteicos , Saponinas/metabolismo , Saponinas/uso terapêutico
4.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 637-644, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-826338

RESUMO

The present study aimed to evaluate the potential therapeutic effects of Anemoside B4 (AB4), Panax notoginseng saponins (PNS), Notoginsenoside R1 (SR1), Saikosaponin A (SSA) and Saikosaponin D (SSD) on piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 132 completely healthy piglets were randomly divided into 22 groups consisting of six animals each. Control piglets were intramuscularly injected with 2 ml of PRRSV (NJGC strain) solution containing 106  TCID50  virus/ml. For low-, middle- and high-dose saponin treatment groups, the piglets were initially administrated with the same volume of PRRSV solution, followed by intraperitoneal injection with AB4, PNS, SR1, SSA or SSD at 1, 5 or 10 mg/kg b.w. on day 3. The piglets in drug control group were intraperitoneally injected with 10 mg/kg b.w. of each saponin without prior PRRS challenge, while those in blank control group were injected with the same amount of normal saline. The results indicated that all the five saponin components could decrease the incidence and severity of PRRSV-induced immunopathological damages, including the elevated body temperature, weight loss, anaemia and internal inflammation. Moreover, the saponin components could enhance protein absorption and immune responses. Taken together, this study reveals that the saponin components are effective against PRRSV infection and strengthen the immune system and thus may serve as potential antiviral therapeutic agents.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Saponinas/uso terapêutico , Animais , Plaquetas , Redução da Medicação , Contagem de Eritrócitos , Hemoglobinas , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Contagem de Leucócitos , Magnoliopsida/química , Masculino , Vírus da Síndrome Respiratória e Reprodutiva Suína , Saponinas/administração & dosagem , Saponinas/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA